GABAA receptor-mediated tonic inhibition in thalamic neurons.

نویسندگان

  • David W Cope
  • Stuart W Hughes
  • Vincenzo Crunelli
چکیده

Tonic GABAA receptor-mediated inhibition is typically generated by delta subunit-containing extrasynaptic receptors. Because the delta subunit is highly expressed in the thalamus, we tested whether thalamocortical (TC) neurons of the dorsal lateral geniculate nucleus (dLGN) and ventrobasal complex exhibit tonic inhibition. Focal application of gabazine (GBZ) (50 microM) revealed the presence of a 20 pA tonic current in 75 and 63% of TC neurons from both nuclei, respectively. No tonic current was observed in GABAergic neurons of the nucleus reticularis thalami (NRT). Bath application of 1 microM GABA increased tonic current amplitude to approximately 70 pA in 100% of TC neurons, but it was still not observed in NRT neurons. In dLGN TC neurons, the tonic current was sensitive to low concentrations of the delta subunit-specific receptor agonists allotetrahydrodeoxycorticosterone (100 nM) and 4,5,6,7-tetrahydroisoxazolo[5,4-c]-pyridin-3-ol (THIP) (100 nM) but insensitive to the benzodiazepine flurazepam (5 microM). Bath application of low concentrations of GBZ (25-200 nM) preferentially blocked the tonic current, whereas phasic synaptic inhibition was primarily maintained. Under intracellular current-clamp conditions, the preferential block of the tonic current with GBZ led to a small depolarization and increase in input resistance. Using extracellular single-unit recordings, block of the tonic current caused the cessation of low-threshold burst firing and promoted tonic firing. Enhancement of the tonic current by THIP hyperpolarized TC neurons and promoted burst firing. Thus, tonic current in TC neurons generates an inhibitory tone. Its modulation contributes to the shift between different firing modes, promotes the transition between different behavioral states, and predisposes to absence seizures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The general anaesthetic etomidate inhibits the excitability of mouse thalamocortical relay neurons by modulating multiple modes of GABAA receptor-mediated inhibition

Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described 'spillover' mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors...

متن کامل

GABAA receptor alpha 4 subunits mediate extrasynaptic inhibition in thalamus and dentate gyrus and the action of gaboxadol.

The neurotransmitter GABA mediates the majority of rapid inhibition in the CNS. Inhibition can occur via the conventional mechanism, the transient activation of subsynaptic GABAA receptors (GABAA-Rs), or via continuous activation of high-affinity receptors by low concentrations of ambient GABA, leading to "tonic" inhibition that can control levels of excitability and network activity. The GABAA...

متن کامل

Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics.

Among hypnotic agents that enhance GABAA receptor function, etomidate is unusual because it is selective for beta2/beta3 compared with beta1 subunit-containing GABAA receptors. Mice incorporating an etomidate-insensitive beta2 subunit (beta(2N265S)) revealed that beta2 subunit-containing receptors mediate the enhancement of slow-wave activity (SWA) by etomidate, are required for the sedative, a...

متن کامل

Aberrant GABAA Receptor-Mediated Inhibition in Cortico-Thalamic Networks of Succinic Semialdehyde Dehydrogenase Deficient Mice

Aberrant γ-aminobutyric acid type A (GABA(A)) receptor-mediated inhibition in cortico-thalamic networks remains an attractive mechanism for typical absence seizure genesis. Using the whole-cell patch clamp technique we examined 'phasic' and 'tonic' GABA(A) inhibition in thalamocortical neurons of somatosensory (ventrobasal, VB) thalamus, nucleus reticularis thalami (NRT) neurons, and layer 5/6 ...

متن کامل

Propofol suppresses synaptic responsiveness of somatosensory relay neurons to excitatory input by potentiating GABAA receptor chloride channels

Propofol is a widely used intravenous general anesthetic. Propofol-induced unconsciousness in humans is associated with inhibition of thalamic activity evoked by somatosensory stimuli. However, the cellular mechanisms underlying the effects of propofol in thalamic circuits are largely unknown. We investigated the influence of propofol on synaptic responsiveness of thalamocortical relay neurons ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 50  شماره 

صفحات  -

تاریخ انتشار 2005